

CSE: NVPC | OTC: NVPCF | FRA: YQ10

Nova Pacific is poised to advance a significant polymetallic high-grade volcanogenic massive sulfide deposit on Vancouver Island. British Columbia.

First discovered in 1982, the Lara Project, is host to high-grade VMS deposit within the same geological regime as the world-class Myra Falls/Buttle Lake mine (40 million T), located 145 km to the north. VMS deposits are known to occur in clusters therefore the Lara Project has excellent exploration upside.

\$2,000,000 Financing in Progress

- Announced August 22, 2024
- 8 million units @ \$0.25; warrant exercisable at \$0.40 (2yr);
- Acceleration clause, at or above \$0.90 for 10 consecutive days.

Use of Proceeds

Start infill drilling on the advanced stage, precious metal rich, Lara VMS deposit; general working capital

Lara Project Highlights

- Location: 64 km northwest of Victoria, BC
- Advanced VMS deposit with high precious metal grades: Surface trench yielded 3.51m of 24.58 g/t Au, 513.6 g/t Ag, 3.04% Cu, 3.01% Zn, 8.30% Pb
- Strategic Location: Situated in a top-tier mining jurisdiction with excellent infrastructure and all year access; roads, power and port facilities within 15 kms.
- Significant Historical Resource: Over 323 drill holes and 679 meters of pre-production underground access completed to date; equivalent to a cost of "\$30 million today.
- Substantial Expansion Potential: Historical exploration focused on only three mineralized zones; multiple high-grade drill holes/zones were excluded from resource estimates.

- World Class Exploration Potential: The Myra Falls/Buttle Lake Mine, in the same analogous geological formation, owned by Trafigura, went into production with 1.9 million tonnes at the same grade as the Lara and eventually mined over 40 million tonnes.
- The Deposit: open to expansion at depth and along strike
- Multi-Metal Resource: High-grade intersections of gold, silver, zinc and copper
- Experienced Leadership: Nova Pacific is let by a capable management team with over four decades of mining expertise and multiple significant prior discoveries

Current Mineral Resource Estimate

1% ZN BLOCK CUT-OFF

Category	Tonnes	Zinc (%)	Silver (g/t)	Copper (%)	Lead (%)	Gold (g/t)
Indicated	1,146,700	3.01	32.97	1.05	0.58	1.97
Inferred	669,600	2.26	32.99	0.90	0.44	1.90

2% ZN BLOCK CUT-OFF

Category	Tonnes	Zinc (%)	Silver (g/t)	Copper (%)	Lead (%)	Gold (g/t)	
Indicated	428,600	5.65	47.04	2.25	1.18	2.39	
Inferred	207,900	3.99	37.57	1.73	0.84	2.30	

Workflow Objectives and Timeline

- · Application for a 50-drill hole permit (completed).
- Establish cooperation agreements with the local Indigenous communities (in progress).
- Complete 3D georeferencing of historical drill intercepts and generate infill drilling locations to establish a measured and Indicted resource (in progress).
- Initiate infill drilling within the mineralized zones to enhance the current resource. (in planning stage, commence Q1 2025)
- Complete a detailed Plan of Operation as a first step to obtaining a mining permit (commence Q1, 2026)
- Initiate conceptual scoping studies relevant to sensor-based ore sorting. (This is a mineral pre-concentration technology that upgrades ore materials, prior to shipping to offshore smelters, by identifying and rejecting waste materials early in the mining process resulting in a lower gross volume and reduced smelter costs.) (in discussion)
- Build upon existing environmental studies (planned, commence Q1, 2025)
- Prepare updated NI 43-101 report with revised tonnage and grade estimates then initiate preliminary engineering studies for underground mining at a rate of up to 500tpd (Q1,2026)

Proven Leadership

J. Malcolm Bell

Over 45 years of mineral exploration experience with a proven track record of major discoveries and as a leader in both private and public enterprises.

Dal Brynelsen

Over 40 years of experience in the resource industry having developed and operated several underground gold mines; He is a Founding Director of Griffin Mining Limited and serves as a director of Hebei Hua Ao Mining Company which is a worldclass operating zinc mine in China.

25,212,100

Shares Issued

14,935,000

Warrants Outstanding

2,100,000

Options Outstanding

Nova Pacific Metals Corp.

J. Malcolm Bell CEO 604-803-8600 Scott Young
Business Development
705-888-2756

info@novapacificmetals.com novapacificmetals.com 306-1110 Hamilton Street Vancouver, BC V6B 2S2

Lara Highlighted Historical High Grade Drill Results

DDH	From (m)	To (m)	Width (m)	Wt. % Gold (g/t)	Wt. % Silver (g/t)	Wt. % Zinc (%)	Wt. % Copper (%)	Wt. % Lead (%)
LA84-012	51.38	60.08	8.70	3.26	61.23	3.01	0.68	0.45
LA85-034	75.02	85.40	10.38	1.05	57.18	4.29	0.51	0.73
LA85-036	23.67	28.10	4.43	8.91	74.99	3.48	0.87	0.50
LA85-040	46.00	50.80	4.80	6.58	263.03	8.94	1.14	2.47
LA85-044	76.26	82.14	5.88	5.88	56.87	3.93	0.36	0.89
LA85-062	85.24	102.70	17.46	3.02	72.38	3.10	0.48	0.47
LA86-080	208.42	213.78	5.36	2.99	92.10	3.80	0.80	1.63
LA86-085	87.72	90.16	2.44	4.13	135.89	7.73	1.26	0.53
LA86-134	15.84	31.08	15.24	6.64	95.28	5.37	1.00	0.71
LA86-135	8.25	14.32	6.07	8.78	268.69	18.61	2.11	3.93
LA86-139	29.64	35.35	5.71	4.24	214.07	12.84	0.97	3.22
LA86-140	44.92	55.98	11.06	0.86	39.79	0.88	0.06	0.29
LA86-141	17.22	26.51	9.29	3.56	121.83	8.65	0.73	2.07
LA87-182	224.43	226.45	2.02	4.43	200.30	25.38	2.53	5.88
LA87-184	355.53	359.99	4.46	5.53	48.42	3.34	1.92	0.67
LA89-233	152.24	161.31	9.07	0.97	58.07	0.02	0.00	0.01
LA89-233	25.84	30.94	5.10	2.66	129.69	10.66	1.15	2.17
LA89-241	168.85	169.35	0.50	45.54	412.74	22.60	2.59	11.50
LA89-245	23.10	23.55	0.45	13.97	979.76	22.50	1.76	8.98